skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Del_Gado, Emanuela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Discontinuous shear thickening (DST) is associated with a sharp rise in a suspension’s viscosity with increasing applied shear rate or stress. Key signatures of DST, highlighted in recent studies, are the very large fluctuations of the measured stress as the suspension thickens with increasing rate. A clear link between microstructural development and the dramatic increase in stress fluctuations has not been established yet. To identify the microstructural underpinnings of this behavior, we perform simulations of sheared dense suspensions. Through an analysis of the particle contact network, we identify a subset of constrained particles that contributes directly to the rapid rise in viscosity and large stress fluctuations. Indeed, both phenomena can be explained by the growth and percolation of constrained particle networks—in direct analogy to rigidity percolation. A finite size scaling analysis confirms this to be a percolation phenomenon and allows us to estimate the critical exponents. Our findings reveal the specific microstructural self-organization transition that underlies DST. 
    more » « less
  2. Abstract Cessation of flow in yield stress fluids results in a stress relaxation process that eventually leads to a finite residual stress. Both the rate of stress relaxation and the magnitude of the residual stresses systematically depend on the preceding flow conditions. To assess the microscopic origin of this memory effect, we combine experiments with large-scale computer simulations, exploring the behavior of jammed suspensions of soft repulsive particles. A spatiotemporal analysis of particle motion reveals that memory formation during flow is primarily governed by the emergence of domains of spatially correlated nonaffine displacements. These domains imprint the configuration of stress imbalances that drive dynamics upon flow cessation, as evidenced by a striking equivalence of the spatial correlation patterns in particle displacements observed during flow and upon flow cessation. Additional contributions to stress relaxation result from the particle packing that reorganizes to minimize the resistance to flow by decreasing the number of locally stiffer configurations. Regaining rigidity upon flow cessation drives further relaxation and effectively sets the magnitude of the residual stress. Our findings highlight that flow in yield stress fluids can be seen as a training process during which the material stores information of the flowing state through the development of domains of correlated particle displacements and the reorganization of particle packings optimized to sustain the flow. This encoded memory can then be retrieved in flow cessation experiments. 
    more » « less
  3. We investigate the spatial correlations of microscopic stresses in soft particulate gels using 2D and 3D numerical simulations. We use a recently developed theoretical framework predicting the analytical form of stress–stress correlations in amorphous assemblies of athermal grains that acquire rigidity under an external load. These correlations exhibit a pinch-point singularity in Fourier space. This leads to long-range correlations and strong anisotropy in real space, which are at the origin of force-chains in granular solids. Our analysis of the model particulate gels at low particle volume fractions demonstrates that stress–stress correlations in these soft materials have characteristics very similar to those in granular solids and can be used to identify force chains. We show that the stress–stress correlations can distinguish floppy from rigid gel networks and that the intensity patterns reflect changes in shear moduli and network topology, due to the emergence of rigid structures during solidification. 
    more » « less
  4. Earth's surface materials constitute the basis for life and natural resources. Most of these materials can be catergorized as soft matter, yet a general physical understanding of the ground beneath our feet is still lacking. Here we provide some perspectives. 
    more » « less
  5. Prestress in amorphous solids bears the memory of their formation and plays a profound role in their mechanical properties. Here we develop a set of mathematical tools to investigate mechanical response of prestressed systems, using stress rather than strain as the fundamental variable. This theory allows microscopic prestress to vary for the same bond or contact configuration and is particularly convenient for nonconservative systems, such as granular packings and jammed suspensions, where there is no well-defined reference state, invalidating conventional elasticity. Using prestressed nonconservative triangular lattices and a computational model of amorphous solids, we show that drastically different mechanical responses can show up in amorphous materials at the same density, due to nonconservative interactions which evolve over time, or different preparation protocols. In both cases, the information is encoded in the prestress of the network and not visible at all from the configurations of the network in the case of nonconservative interactions. 
    more » « less
  6. The manuscript offers a critical perspective on the shear-induced solid-to-liquid transition in amorphous materials, synthesizing insights from the talks and informal discussions that unfolded during a week of vibrant exchange at the Lorentz Center. 
    more » « less